\(A=15-8x-x^2=-\left(x+4\right)^2+31\)
Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+31\le31\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy maxA = 31 <=> x = - 4
\(B=4x-x^2+2=-\left(x-2\right)^2+6\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+6\le6\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy maxB = 6 <=> x = 2
a) \(A=15-8x-x^2=-\left(x^2+8x+16\right)-1\)
\(=-\left(x+4\right)^2-1\le-1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x+4\right)=0\Rightarrow x=-4\)
b) \(B=4x-x^2+2=-\left(x^2-4x+4\right)+6\)
\(=-\left(x-2\right)^2+6\le6\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
c) Trang nghĩ nên sửa đề nhé:
\(C=-x^2-y^2+4x+4y+2\)
\(C=-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+10\)
\(C=-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x-2\right)^2=0\\-\left(y-2\right)^2=0\end{cases}}\Rightarrow x=y=2\)
A = 15 - 8x - x2
= -( x2 + 8x + 16 ) + 31
= -( x + 4 )2 + 31
-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 31 ≤ 31
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxA = 31 <=> x = -4
B = 4x - x2 + 2
= -( x2 - 4x + 4 ) + 6
= -( x - 2 )2 + 6
-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 6 ≤ 6
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxB = 6 <=> x = 2
C = -x2 - y2 + 4x + 4y + 2 ( -x2 mới ra :v )
= -( x2 - 4x + 4 ) - ( y2 - 4y + 4 ) + 10
= -( x - 2 )2 - ( y - 2 )2 + 10
\(\hept{\begin{cases}-\left(x-2\right)^2\le0\forall x\\-\left(y-2\right)^2\le0\forall y\end{cases}}\Rightarrow-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)
=> MaxC = 10 <=> x = y = 2
\(A=15-8x-x^2\)
\(=-\left(x^2+8x+15\right)\)
\(=-\left(x+4\right)^2+31\le31\forall x\)
Dấu"="xảy ra khi \(-\left(x+4\right)^2=0\Rightarrow x=-4\)
Vậy \(Max_A=31\Leftrightarrow x=-4\)
\(B=4x-x^2+2\)
\(=-\left(x^2-4x+2^2\right)+6\)
\(=-\left(x-2\right)^2+6\le6\forall x\)
Dấu"="xảy ra khi \(-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(Max_B=6\Leftrightarrow x=2\)