Có x - y = 4
=> (x - y)2 = 42
=> x2 + y2 - 2xy = 16
=> x2 + y2 - 2.5 = 16 (vì xy = 5)
=> x2 + y2 = 26
Vậy ........................................
Có x - y = 4
=> (x - y)2 = 42
=> x2 + y2 - 2xy = 16
=> x2 + y2 - 2.5 = 16 (vì xy = 5)
=> x2 + y2 = 26
Vậy ........................................
a) Tìm giá trị của x + y biết x - y = 2 , xy = 99 và y < 0
b) Giá trị của x + y biết x - y = 4 , xy = 5 và x < 0
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
Bài 4: Chứng minh rằng
a) (x-y)2+4xy=(x+y)2
b) Tính giá trị của biểu thức (x+y)2 biết x-y=5; xy=3
Tính giá trị biểu thức a) x^5y - xy^5 biết x - y =2 ; x^2 + y^2 =4 b) x^5 -32y^5 biết xy = 3; x + 2y =7: x>2y
Tính giá trị biểu thức
a) x^5y - xy^5 biết x - y =2 ; x^2 + y^2 =4
b) x^5 -32y^5 biết xy = 3; x + 2y =7: x>2y
cho A = xy^2+ y^2(y^2 -x) +1 /x^2.y^4+2y^2+x^2 +2. Tìm giá trị của biến để A đạt giá trị nhỏ nhất
tìm giá trị của x^2+y^2 biết x+y=1/40; xy=1/80
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !