Tìm một số có 5 chữ số N = abcde biết rằng chữ số a bằng số dư của phép chia N cho 2, chữ số b bằng số dư của phép chia N cho 3, chữ số c bằng số dư của phép chia N cho 4, chữ số d bằng số dư của phép chia N cho 5, và chữ số e bằng số dư của phép chia N cho 6. (Chú ý các chữ số a, b, c, d, e có thể trùng nhau.)
Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b).Số ước nguyên duơng của số chính phương là một số lẻ.Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...cho đa thức P(a)=a^5-8a^4+21a^3-34a^2+80a-96
a) chứng minh P(a) chia hết cho 6 với a thuộc Z.
b) Tìm số dư trong phép chia P(a) cho a-2,652
c) Tìm gần đúng hệ số a^2 trong đa thức thương của phép chia P(a) cho a-2,652
Tìm số dư trong phép chia của biểu thức :
(x+1)(x+5)(x+3)(x+7)+2002 cho x2+8x+12
câu 1: tìm các cặp số nguyên (x; y) thõa mản 10x+y=x2+y2+1
câu 2: tìm số nguyên dương nhỏ nhất thỏa : chia 2 dư 1, chia cho 3 dư 2, chia cho 4 dư 3 , chia cho 5 dư 4, chia cho 6 dư 5, chia cho 7 dư 6, chia cho 8 dư 7, chia cho 9 dư 8, chia cho 10 dư 9.
câu 3 tìm các cặp số (x; y) nguyên dương nghiệm đúng phương trình 5x4-8(12-y2)=2207352
tìm số dư của phép chia 5^2015 chia cho 53
Tìm số dư của phép chia (3100 + 5100) cho 17
CMR số chính phương khi chia cho 3 dư 0 hoặc 1
Cho đa thức P(x)=x3 + bx2 + cx +d và cho biết:P(1)=-15; P(2)=-15; P(3)=-9
a) Lập hệ phương trình tìm các hệ số b,c,d của P(x)
b) Tìm số dư r và đa thức thương Q(x) trong phép chia P(x) cho (x-13)