ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\\frac{3x-2}{x+1}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-1\\\orbr{\begin{cases}x\ge\frac{3}{2}\\x\le-1\end{cases}}\end{cases}}}\)
Khi đó: \(\sqrt{\frac{3x-2}{x+1}}=3\)
\(\Leftrightarrow\frac{3x-2}{x+1}=9\)
\(\Leftrightarrow9x+9=3x-2\)
\(\Leftrightarrow6x=-11\)
\(\Leftrightarrow x=\frac{-11}{6}\)(T/m ĐKXĐ)
ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\x\ge\frac{3}{2}hoặcx\le-1\end{cases}}\)
ĐKXĐ : \(\orbr{\begin{cases}x\ge\frac{2}{3}\\x\le-1\end{cases}}\)
Ta có : \(\sqrt{\frac{3x-2}{x+1}}=3\)
\(\Leftrightarrow\frac{3x-2}{x+1}=9\)
\(\Leftrightarrow3x-2=9\left(x+1\right)\)
\(\Leftrightarrow3x-2=9x+9\)
\(\Leftrightarrow6x=-11\)
\(\Leftrightarrow x=-\frac{11}{6}\left(TM\right)\)
Vậy PT có 1 nghiệm duy nhất là \(x=-\frac{11}{6}\)