TXĐ : R
y′= 0 ⇔
Bảng biến thiên:
Hàm số đạt cực đại tại x = 2, cực tiểu tại x = -4 và y CD = y(2) = 1/4; y CT = y(−4) = −1/8
TXĐ : R
y′= 0 ⇔
Bảng biến thiên:
Hàm số đạt cực đại tại x = 2, cực tiểu tại x = -4 và y CD = y(2) = 1/4; y CT = y(−4) = −1/8
Tìm các điểm cực trị của các hàm số sau: y = x + ln(x + 1)
Tìm cực trị của các hàm số sau: y = x 2 + x - 5 x + 1
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm cực trị của các hàm số sau: y = x + 2 2 . x - 3 3
Tìm cực trị của các hàm số sau: y = (7 - x) x + 5 3
Câu 8 : Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m+1\right)x-1\) đạt cực đại tại x=\(-\)2
Áp dụng Quy tắc 1, hãy tìm các điểm cực trị của các hàm số sau:
y = x + 1 x
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị