TXĐ: R\{-1}
Hàm số đồng biến trên các khoảng và do đó không có cực trị.
TXĐ: R\{-1}
Hàm số đồng biến trên các khoảng và do đó không có cực trị.
Tìm các điểm cực trị của các hàm số sau: y = x + ln(x + 1)
Tìm cực trị của các hàm số sau: y = x - 4 2 x 2 - 2 x + 5
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm cực trị của các hàm số sau: y = x + 2 2 . x - 3 3
Tìm cực trị của các hàm số sau: y = (7 - x) x + 5 3
Cho hàm số y = x 3 - 2 x 2 - 1 (1) và các mệnh đề
(1) Điểm cực trị của hàm số (1) là x = 0 hoặc x = 4/3
(2) Điểm cực trị của hàm số (1) là x = 0 và x = 4/3
(3) Điểm cực trị của đồ thị hàm số (1) là x = 0 và x = 4/3
(4) Cực trị của hàm số (1) là x = 0 và x = 4/3
Trong các mệnh đề trên, số mệnh đề sai là:
A. 0
B. 1
C. 2
D. 3
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Áp dụng Quy tắc 1, hãy tìm các điểm cực trị của các hàm số sau:
y = x + 1 x