\(\overline{62xy427}⋮99\Rightarrow\overline{62xy427}⋮9,11\)
+) Ta có: \(\overline{62xy427}⋮9\)
\(\Rightarrow6+2+x+y+4+2+7=21+x+y⋮9\)
\(\Rightarrow x+y\in\left\{6;15\right\}\)
+) \(\overline{62xy427}⋮11\)
\(\Rightarrow\left(6+x+4+7\right)-\left(2+y+2\right)⋮11\)
\(\Rightarrow\left(17+x\right)-\left(4+y\right)⋮11\)
\(\Rightarrow13+\left(x-y\right)⋮11\)
\(\Rightarrow x-y\in\left\{9;-2\right\}\)
Với x - y = 9 => x = 9, y = 0 (loại)
Với x - y = -2 ; x + y thuộc {6;15} (loại 15}
=> x = 2, y = 4
Vậy x = 2, y = 4