Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
đỗ huy

tìm cặp số nguyên dương x,y nguyên tố cùng nhau thỏa mãn : \(\dfrac{x+y}{x^2+y^2}\)=\(\dfrac{7}{25}\)

zZz Cool Kid_new zZz
14 tháng 1 2019 lúc 21:44

Do vai trò của x,y  bình đẳng như nhau,giả sử \(x\ge y\),khi đó:

\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)

\(\Rightarrow7\left(x^2+y^2\right)=25\left(x+y\right)\)

\(\Rightarrow7x^2+7y^2=25x+25y\)

\(\Rightarrow7x^2-25x=25y-7y^2\)

\(\Rightarrow x\left(7x-25\right)=y\left(25-7y\right)\)

\(\Rightarrow7x-25\)và \(25-7y\)cùng dấu vì \(x,y\inℕ\)

Nếu \(\hept{\begin{cases}7x+25< 0\\25-7y< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 4\\y< 4\end{cases}}\)(trái với giả sử)

Nếu \(\hept{\begin{cases}7x-25\ge0\\25-7y\ge0\end{cases}}\)

\(\Rightarrow x\ge4,y< 4\)

Thử y là các số tự nhiên từ 0 đến 3 ta được \(x=4,y=3\)

Vậy các cặp số (x,y) cần tìm là:\(\left(3;4\right)\)và các hoán vị của chúng


Các câu hỏi tương tự
Lê Thành Hiệp
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Edogawa Conan
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
lipphangphangxi nguyen k...
Xem chi tiết
đinh phương anh
Xem chi tiết
Bùi Minh Quân
Xem chi tiết