1. Tìm tất cả các số tự nhiên n sao cho: P = 1! + 2! + 3! + ... + n! là số chính phương
2. Chứng minh rằng với n là số nguyên dương bất kì thì:
\(A=1+\frac{1}{4}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1,65\)
3. Tìm tất cả các số tự nhiên không là tổng của 2 hợp số.
4. Tìm các số nguyên x,y thỏa mãn : \(\left(x+2003\right)\left(x+2005\right).4^y=3025\)
cho x, y là các số thực sao cho \(x+\frac{1}{y}\)và \(y+\frac{1}{x}\) là các số nguyên
cmr :\(x^2y^2+\frac{1}{x^2y^2}\) là số nguyên
Mn giúp mk giải đề này với.(Mn đừng bơ mk nha. Mơn mn nhìu)
1.Tìm tất cả các số tự nhiên có 3 chữ số abc trong hệ thập phân sao cho với n là số nguyên lớn hơn 2 ta có abc =\(n^2-1\)và cba =\(\left(n-2\right)^2\)
2.giải hpt:\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{2}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\end{cases}}\)
1) Tìm số tự nhiên n sao cho \(\begin{cases}1,02^n< n\\1,02^{n+1}>n+1\end{cases}\) .
2) Tìm cặp số tự nhiên (x, y) với x,y có hai chữ số và thỏa mãn phương trình: \(x^3-y^2=xy\)
3) Tìm x sao cho \(1^6+2^6+3^6+...+x^6=12313497066\)
4) Tìm các số nguyên dương a, b, c ,d biết:
\(d+\frac{1}{c+\frac{1}{b+\frac{1}{a+\frac{1}{3}}}}=\frac{456}{12356}\)
Tìm x biết : \(\left(4-\sqrt{15}\right)^x-3\left(4+\sqrt{15}\right)^x=-2\)
Cho x,y là các số thục sao cho \(x+\frac{1}{y}\)và \(y+\frac{1}{x}\)là các số nguyên . Chứng minh rằng : \(x^2y^2+\frac{1}{x^2y^2}\)là các số nguyên
Tìm số tự nhiên x sao cho \(\frac{x-1}{2x+1}\)là số nguyên
a)Tìm nghiệm nguyên của phương trình:\(\frac{1}{x}\)+ \(\frac{1}{y}\)=2
b)Tìm số tự nhiên n sao cho : A=n2 + 2n + 8 là số chính phương.
Cho các số thực \(x;y\ne0\)sao cho \(x+\frac{1}{y}\)và \(y+\frac{1}{x}\)là các số nguyên .CMR \(x^3y^3+\frac{1}{x^3y^3}\)là số nguyên
Tìm các số nguyên dương x,y sao cho \(\frac{x^3+x}{3xy-1}\) là một số nguyên