Tìm số tự nhiên n biết:n+S(n)=2016.Trong đó S(n) là tổng các chữ số của n.
cho \(S_n=\left(\frac{3+\sqrt{5}}{2}\right)^n+\left(\frac{3-\sqrt{5}}{2}\right)^n-2\)là một số tự nhiên
Tìm số tự nhiên n để Sn là số chính phương
Đề bài thiếu n là số tự nhiên nhé
_ Với \(n=0\Rightarrow S\left(0\right)=1^0+2^0+3^0+4^0=4⋮4.\)
_Với \(n=1\Rightarrow S\left(1\right)=1^1+2^1+3^1+4^1=10\equiv2\left(mod4\right)\)
_Vơi \(n\ge2\Rightarrow\hept{\begin{cases}1^n\equiv1\left(mod4\right)\\2^n⋮4\\4^n⋮4\end{cases}}\)
+ Với n lẻ, ta có: \(3\equiv-1\left(mod4\right)\Leftrightarrow3^n\equiv\left(-1\right)^n\equiv-1\left(mod4\right)\)(vì n lẻ)
\(\Rightarrow S\left(n\right)\equiv1+0-1+0\equiv0\left(mod4\right)\)
+ Với n chẵn, ta có \(3\equiv-1\left(mod4\right)\Leftrightarrow3^n\equiv\left(-1\right)^n\equiv1\left(mod4\right)\)(vì n chẵn)
\(\Rightarrow S\left(n\right)\equiv1+0+1+0\equiv2\left(mod4\right)\)
Vậy: -với n=0 và n là số tự nhiên le lớn hơn 1 thì \(S\left(n\right)⋮4\)
-vơi n=1 và n là số tự nhiên chẵn lớn hơn 1 thì \(S\left(n\right)\equiv2\left(mod4\right)\)
1. a) Tìm n∈N để: \(\left(23-n\right)\left(23+n\right)\) là SCP.
b) Tìm 3 số lẻ liên tiếp mà tổng bình phương của chúng là 1 SCP.
2. a) Tìm nghiệm nguyên: \(x^{11}+y^{11}=11z\)
b) Tìm số tự nhiên n thỏa mãn: \(361\left(n^3+5n+1\right)=85\left(n^4+6n^2+n+5\right)\)
tìm tất cả các số tự nhiên n để P = \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\) là số nguyên tố !!!!
tìm tất cả các số tự nhiên n sao cho tích các chữ số của nó bằng \(\left(n-6\right)^2\left(n^2-85n+40\right)\)
tìm số tự nhiên n biết n+S(n)=2011, trong đó S(n) là tổng các chữ số của n
tìm số tự nhiên n biết n+S(n)=2011, trong đó S(n) là tổng các chữ số của n
Tìm tất cả các số tự nhiên n để P=\(\left(n^2-2n+1\right)\left(n^2-2n+2\right)+1\)là số nguyên tố