n^2+n+1 chia het cho n+1
=>n.(n+1)+1 chia het cho n+1
=>1 chia het cho n+1
=>n+1 E Ư(1)={1}
=>n=0
Vậy n=0
Ta có : \(n^2+n+1\)chia hết cho \(n+1\)
\(n^2+n+1=n\cdot n+n+1=n\left(n+1\right)+1\)
Vì \(n^2+n+1\) chia hết cho \(n+1\)
\(n\left(n+1\right)\) chia hết cho \(n+1\)
mà \(n^2+n+1=n\cdot n+n+1=n\left(n+1\right)+1\)
\(\Rightarrow1\) chia hết cho \(n+1\)
\(\Rightarrow\left(n+1\right)\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\left(n+1\right)\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{0;-2\right\}\)
Vì \(n\in N\) \(\Rightarrow n=0\)
Vậy \(n=0\)