cho số thực x,y không ậm và thỏa mãn điều kiện:\(x^2+y^2\le2\).hãy tính giá trị lớn nhất của biểu thức:
\(P=\sqrt{x\cdot\left(29\cdot x+3\cdot y\right)}+\sqrt{y\cdot\left(29\cdot y+3\cdot x\right)}\)
Với \(n\) là số lẻ thì: \(a^n-b^n=\left(a-b\right)\cdot A\)
\(a^n+b^n=\left(a+b\right)\cdot B\)
Với \(n\) là số chẳn thì: \(a^n-b^n=\left(a-b\right)\cdot C=\left(a+b\right)\cdot D\)
Tìm các biểu thức \(A,B,C,D\)
Tìm tất cả các bộ ba số nguyên dương thỏa mãn hệ phương trình :
\(\hept{\begin{cases}2\cdot x^{2010}=y^6+z^6\\2\cdot y^{2010}=z^6+x^6\\2\cdot z^{2010}=x^6+y^6\end{cases}}\)
\(\sqrt{2\cdot x^2+4\cdot x+6}\) +\(\sqrt{3\cdot x^2+6\cdot x+12}\)=5-\(2\cdot x\)-\(x^2\)
Cho phương trình : x2 - mx + 1005m = 0 ( x là ẩn , m là tham số ) có hai nghiệm x1 , x2 .
Tìm giá trị của m để biểu thức M = \(\frac{2\cdot x_1\cdot x_2+2680}{x_1^2+x_2^2+2\left(x_1\cdot x_2+1\right)-1}\)đạt giá trị nhỏ nhất
Cho x,y là các số thực dương thỏa mãn điều kiện:\(x+y\le1\).Tìm giá trị nhỏ nhất của biểu thức \(K=4\cdot x\cdot y+\frac{1}{x^2+y^2}+\frac{2}{x\cdot y}\)
Cho các số thực dương thỏa mãn a+b+c=1.tìm giá trị lớn nhất của biểu thức:P= \(\frac{a}{\sqrt{a+b\cdot c}}+\frac{b}{\sqrt{b+c\cdot a}}+\frac{c}{\sqrt{c+a\cdot b}}\)
cho f(n)=(n2 + n +1 )2 +1 với n thuộc N* . Đặt \(p_n=\frac{f_{\left(1\right)}\cdot f_{\left(3\right)}\cdot f_{\left(5\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n-1\right)}}{f_{\left(2\right)}\cdot f_{\left(4\right)}\cdot f_{\left(6\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n\right)}}\)
chứng minh rằng : P1 + P2 +P3 +................+ Pn <1/2
Cho tam giác ABC vuông tại A có AB=c, BC=a, AC=b, đường cao AH. Lấy D nằm giữa A và C. Kẻ DE vuông góc với BC.
Chứng minh: \(\sin B=\frac{AB\cdot AD+EB\cdot ED}{BA\cdot BE+DA\cdot DE}\)
(Gợi ý cho những người không biết sin có thể làm luôn: Trong một tam giác vuông, sin góc nhọn bằng tỉ số cạnh đối chia cho cạnh huyền)