Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
=>x=2k; y=3k
\(xy^2=144\)
=>\(2k\cdot\left(3k\right)^2=144\)
=>\(2k\cdot9k^2=144\)
=>\(18k^3=144\)
=>\(k^3=8=2^3\)
=>k=2
=>\(\begin{cases}x=2\cdot2=4\\ y=3\cdot2=6\end{cases}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
=>x=2k; y=3k
\(xy^2=144\)
=>\(2k\cdot\left(3k\right)^2=144\)
=>\(2k\cdot9k^2=144\)
=>\(18k^3=144\)
=>\(k^3=8=2^3\)
=>k=2
=>\(\begin{cases}x=2\cdot2=4\\ y=3\cdot2=6\end{cases}\)
Cho các số thực x;y thỏa mãn (x-y)^2+(x^3-y^2)^2+6xy=36+(y^2-x^3)^2.Tìm giá trị lớn nhất A=xy
Tìm GTNN của biểu thức A=2/3.x^2+y^2+z^2-(xy+yz+zx) với x;y;z là các số thực thỏa mãn x>3 và xyz=1
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Tìm tất cả các số thực x,y thỏa mãn:
a)x+y+61=10√x+12√y
b)3x+y+2√xy+17=2(7√x+3√y)
Các số x,y ( x , y khác 0 ) thỏa mãn các điều kiện x^2*y+5=-3 và xy^2 -7 = 1 tìm x , y
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Help me please