Cho các số thực x, y thỏa mãn x2 + y2 = 8. Giá trị nhỏ nhất của S = x + y bằng:
Cho các số thực x, y thỏa mãn x2 + y2 = 1. Giá trị nhỏ nhất của S = x + y bằng:
Cho các số thực x, y thỏa mãn x 2 + y 2 = 1 .
Kí hiệu S = x + y , khi đó khẳng định nào sau đây là đúng?
A. S ≤ - 2
B. S ≥ 2
C. - 2 ≤ S ≤ 2
D. - 2 ≤ S ≤ 2
Cho hai số x,y \(\ge\)0 thay đổi và thỏa mãn x+y=2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
P= x(x3 + x2 + x + 1004y) + y(y3 + y2 + y +1004x) + 1
Tìm giá trị nhỏ nhất của biểu thức P = 4x + y + 3; với x,y là các số thực dương thỏa mãn x + y + xy ≥ 8
Xét các số thực x, y thỏa mãn
√x2+y2+4x−2y+5+√x2+y2−8x−14y+65=6√2
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức T=x2+y2−2x+2y+2.Tính P = m + M
cho số thực dương x;y thỏa mãn x+2y=6 .tìm GTNN của P=\(\dfrac{8}{x}+\dfrac{1}{y}\)
Cho x,y là các số thực dương thỏa mãn \(x+y\ge7\). Tìm giá trị nhỏ nhất \(A=3x+5y+\frac{4}{x}+\frac{75}{y}\)
Xét các số thực dương thỏa mãn: x2y = 1. Tìm giá trị nhỏ nhất của biểu thức P = x \(\sqrt{x^2+y^2}\) + x2