<=> 4xy-2x-2y=4
<=> 4xy-2x-2y+1=5
<=> 2x(2y-1) -(2y-1)=5
<=> (2x-1)(2y-1)=5
Suy ra bảng sau:
2x-1 | 1 | 5 | -1 | -5 |
2y-1 | 5 | 1 | -5 | -1 |
=>
x | 1 | 3 | 0 | -2 |
y | 3 | 1 | -2 | 0 |
Vậy (x,y)= (1,3);(3,1);(0,-2);(-2,0) thì thỏa mãn đề bài
Để tìm các giá trị nguyên \(x\) và \(y\) thỏa mãn phương trình:
\(2 x y - x - y = 2 ,\)
ta có thể thử một số cách giải. Đầu tiên, ta sẽ sắp xếp lại phương trình:
\(2 x y - x - y = 2 (\text{Th} \hat{\text{e}} \text{m}\&\text{nbsp};\text{1}\&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \text{o}\&\text{nbsp};\text{c}ả\&\text{nbsp};\text{hai}\&\text{nbsp};\text{v} \overset{ˊ}{\hat{\text{e}}} ) .\) \(2 x y - x - y + 1 = 3.\)
Bây giờ, nhóm các hạng tử lại:
\(x \left(\right. 2 y - 1 \left.\right) - \left(\right. 2 y - 1 \left.\right) = 3.\)
Ta có thể đưa phương trình này thành dạng:
\(\left(\right. 2 y - 1 \left.\right) \left(\right. x - 1 \left.\right) = 3.\)
Từ đây, ta có thể xem phương trình này là một phương trình tích của hai biểu thức bằng 3. Các yếu tố của 3 có thể là \(1 \times 3\) hoặc \(- 1 \times - 3\). Ta sẽ thử từng trường hợp.
Trường hợp 1: \(2 y - 1 = 1\) và \(x - 1 = 3\)\(2 y - 1 = 1\) \(\Rightarrow y = 1\),\(x - 1 = 3\) \(\Rightarrow x = 4\).Vậy ta có một cặp nghiệm là \(x = 4\) và \(y = 1\).
Trường hợp 2: \(2 y - 1 = 3\) và \(x - 1 = 1\)\(2 y - 1 = 3\) \(\Rightarrow y = 2\),\(x - 1 = 1\) \(\Rightarrow x = 2\).Vậy ta có một cặp nghiệm là \(x = 2\) và \(y = 2\).
Trường hợp 3: \(2 y - 1 = - 1\) và \(x - 1 = - 3\)\(2 y - 1 = - 1\) \(\Rightarrow y = 0\),\(x - 1 = - 3\) \(\Rightarrow x = - 2\).Vậy ta có một cặp nghiệm là \(x = - 2\) và \(y = 0\).
Trường hợp 4: \(2 y - 1 = - 3\) và \(x - 1 = - 1\)\(2 y - 1 = - 3\) \(\Rightarrow y = - 1\),\(x - 1 = - 1\) \(\Rightarrow x = 0\).Vậy ta có một cặp nghiệm là \(x = 0\) và \(y = - 1\).
Kết luậnCác cặp nghiệm nguyên \(\left(\right. x , y \left.\right)\) thỏa mãn phương trình \(2 x y - x - y = 2\) là:
\(\left(\right. 4 , 1 \left.\right) , \left(\right. 2 , 2 \left.\right) , \left(\right. - 2 , 0 \left.\right) , \left(\right. 0 , - 1 \left.\right) .\)