\(n^2-n+13=m^2\)
\(\Leftrightarrow4n^2-4n+52=4m^2\)
\(\Leftrightarrow\left(2n-1\right)^2+51=4m^2\)
\(\Leftrightarrow\left(2m-2n+1\right)\left(2m+2n-1\right)=51=1.51=3.17\)
Xét bảng:
2m-2n+1 | 1 | 51 | 3 | 17 |
2m+2n-1 | 51 | 1 | 17 | 3 |
m | 13 (tm) | 13 (tm) | 5 (tm) | 5 (tm) |
n | 13 (tm) | -12 (tm) | 4 (tm) | -3 (tm) |
thầy sai đâu đấy
\(\left(2n-1\right)^2+51=4m^2\Leftrightarrow\left(2n-1\right)^2-4m^2=-51\)
\(\Leftrightarrow\left(2n-1-2m\right)\left(2n-1+2n\right)=-51\)
vì \(2n-1+2m>2n-1-2m\)
\(\left(2n-1-2m\right)\left(2n-1+2n\right)=1.\left(-51\right)=\left(-51\right).1=3.\left(-17\right)=\left(-17\right).3\)
TH1 : \(\hept{\begin{cases}2n-1-2m=-51\\2n-1+2m=1\end{cases}}\)chứ ạ ?
rồi xét TH còn lại, mong thầy giải đáp giúp, có gì sai thầy cho em xin lỗi
Mình đổi vế ngược lại thôi nha bạn.
\(\left(2n-1\right)^2+51=4m^2\)
\(\Leftrightarrow4m^2-\left(2n-1\right)^2=51\)
\(\Leftrightarrow\left[2m-\left(2n-1\right)\right]\left[2m+\left(2n-1\right)\right]=51\)
\(\Leftrightarrow\left(2m-2n+1\right)\left(2m+2n-1\right)=51\).
CTV đi cãi cùn thế bạn