Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Anh Dũng An

Tìm các số nguyên n để \(A=n^2-n+13\) là số chính phương

Trần Thanh Phương
5 tháng 4 2019 lúc 17:14

Để A là số chính phương thì :

\(n^2-n+13=k^2\)\(\left(k\inℕ\right)\)

\(\Leftrightarrow4n^2-4n+52=4k^2\)

\(\Leftrightarrow\left(2n\right)^2-2\cdot2n\cdot1+1-4k^2+51=0\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2k\right)^2=-51\)

\(\Leftrightarrow\left(2n-2k-1\right)\left(2n+2k-1\right)=-51\)

Dễ thấy \(2n-2k-1< 2n+2k-1\)( vì \(k\inℕ\))

TH1 : \(\hept{\begin{cases}2n-2k-1=-51\\2n+2k-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-25\\n+k=1\end{cases}\Leftrightarrow\hept{\begin{cases}n=-12\\k=13\end{cases}}}}\)

TH2 : \(\hept{\begin{cases}2n-2k-1=-1\\2h+2k-1=51\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=0\\n+k=26\end{cases}\Leftrightarrow\hept{\begin{cases}n=13\\k=13\end{cases}}}}\)

TH3 : \(\hept{\begin{cases}2n-2k-1=-3\\2n+2k-1=17\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-1\\n+k=9\end{cases}\Leftrightarrow\hept{\begin{cases}n=4\\k=5\end{cases}}}}\)

TH4 ; \(\hept{\begin{cases}2n-2k-1=-17\\2n+2k-1=3\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-8\\n+k=2\end{cases}\Leftrightarrow\hept{\begin{cases}n=-3\\k=5\end{cases}}}}\)

Vậy....

zZz Cool Kid_new zZz
5 tháng 4 2019 lúc 20:16

Đặt \(A=n^2-n+13=k^2\)

\(\Rightarrow4n^2-4n+52=4k^2\)

\(\Rightarrow\left(4n^2-4n+1\right)+51=4k^2\)

\(\Rightarrow\left(2k\right)^2-\left(2n-1\right)^2=51\)

\(\Rightarrow\left(2k-2n+1\right)\left(2k+2n-1\right)=51\)

Bạn xét ước của 51 rồi lập bảng nốt nha!


Các câu hỏi tương tự
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
ppp
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết
N.T.M.D
Xem chi tiết
Lai Duy Dat
Xem chi tiết
Bùi Gia Bách
Xem chi tiết
Nguyễn Văn Tiến
Xem chi tiết
THI QUYNH HOA BUI
Xem chi tiết