Giải phương trình nghiệm nguyên không âm: \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
tìm tất cả các số nguyên x, y thỏa mãn
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
Cho x,y là các số thực thuộc (0;1) thỏa mãn \(\frac{\left(x^3+y^3\right)\left(x+y\right)}{xy}=\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+4xy-x^2-y^2\)
tìm số nguyên dương x,y thỏa mãn \(\left(x^2+y^2\right)\left(x+y-8\right)=8\left(xy+1\right)\)
làm ơn có ai giúp mik ko help me!!!!!!!
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức:
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
Tìm tất cả các số nguyên x,y thỏa mãn phương trình: \(x\left(y^2+7\right)+y\left(x^2+7\right)+17=xy\left(xy+3\right)\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức:
\(p=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)