Ta có :\(\frac{a}{3}-\frac{4}{b}=\frac{1}{5}\)
=> \(\frac{ab-12}{3b}=\frac{1}{5}\)
=> 5ab - 60 = 3b
=> 5ab - 3b = 60
=> b(5a - 3) = 60
Đến đây bạn tự lập bảng xét các trường hợp
Ta có :\(\frac{a}{3}-\frac{4}{b}=\frac{1}{5}\)
=> \(\frac{ab-12}{3b}=\frac{1}{5}\)
=> 5ab - 60 = 3b
=> 5ab - 3b = 60
=> b(5a - 3) = 60
Đến đây bạn tự lập bảng xét các trường hợp
tìm các số nguyên a, b thỏa mãn : a/3-4/b=1/5
Tìm các số nguyên a và b thỏa mãn \(\dfrac{1}{a}\)=\(\dfrac{b}{2}\)-\(\dfrac{3}{4}\)
cho x,a,b là các số nguyên dương thỏa mãn x+3=2^a; 3x+1=4^b. tìm x,a,b
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
tìm các số nguyên x;y thỏa mãn a)\(\frac{5}{x}+\frac{4}{y}=\frac{1}{8}\)
b)tìm số hữu tỉ x thỏa mãn tổng của số đó và nghịch đảo của số đó là 1 số nguyên
1) Tìm các số a,b thỏa mãn trong các điều kiện sau:
a + b = | b | - | a |
2) Có bao nhiêu cặp số nguyên (x,y) thỏa mãn một trong các điều kiện sau:
| x | + | y | = 20
| x | + | y | < 20
(Các cặp số (3 ; 4) và (4 ; 3) là hai cặp số khác nhau).
Tìm các số nguyên dương thỏa mãn:
a^3+3a^2+5=5^b và a+3=5^c
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)