\(k^2=\left(m+1\right)\left(m^2+2m\right)\) là số chính phương
\(\Rightarrow k^2=m\left(m+1\right)\left(m+2\right)\ge0\)
Lập bảng xét dấu
\(m\) | \(-2\) \(-1\) \(0\) |
\(m\) | \(-\) \(|\) \(-\) \(|\) \(-\) \(0\) \(+\) |
\(m+1\) | \(-\) \(|\) \(-\) \(0\) \(+\) \(|\) \(+\) |
\(m+2\) | \(-\) \(0\) \(+\) \(|\) \(+\) \(|\) \(+\) |
\(m\left(m+1\right)\left(m+2\right)\) | \(-\) \(0\) \(+\) \(0\) \(-\) \(0\) \(+\) |
\(\Rightarrow\left[{}\begin{matrix}-2\le m\le0\\m>0\end{matrix}\right.\)
\(TH1:\) \(-2\le m\le0\Rightarrow m\in\left\{-2;-1;0\right\}\) thỏa mãn \(k^2=0\ge0\)
\(TH2:\) \(m>0\)
\(k^2=\left(m+1\right)\left(m^2+2m\right)\)
\(d=UC\left(m+1;m^2+2m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}m+1⋮d\\m^2+2m⋮d\end{matrix}\right.\)
\(\Rightarrow m^2+2m-2\left(m+1\right)⋮d\)
\(\Rightarrow m^2+2m-2m-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\)
\(\Rightarrow\left(m+1\right)\left(m^2+2m\right)\) là số chính phương khi chúng là số chính phương.
Ta lại có :
\(\left(m+1\right)\left(m^2+2m\right)=m\left(m+1\right)\left(m+2\right)\) là tích của 3 số liên tiếp nhau không phải là số chính phương khi m>0
Vậy \(m\in\left\{-2;-1;0\right\}\) thỏa mãn đề bài