Tìm các chữ số a, b, c đôi một khác nhau thỏa mãn
\(\overline{acb}+\overline{cab}=2\overline{abc}\) và b>c
1.Chứng minh rằng: \(\left(x^m+x^n+1\right)\)chia hết cho \(x^2+x+1\)
2.Tìm một số có 8 chữ số: \(\overline{a_1a_2....a_8}\)thỏa mãn 2 điều kiện a và b sau:
a) \(\overline{a_1a_2a_3}=\left(\overline{a_7a_8}\right)^2\) b) \(\overline{a_4a_5a_6a_7a_8}=\left(\overline{a_7a_8}\right)^3\)
Các thánh giải bài này giúp mik nha!
Giúp mk với:
1) Cho a, b, c là các số thực dương thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức P = \(2\left(ab+bc+ca\right)-abc\)
Với a, b, c là các số thực thỏa mãn abc=2023. Tính giá trị biểu thức
P=\(\dfrac{1}{bc\left(b+c\right)+2023}\)+\(\dfrac{1}{ca\left(c+a\right)+2023}\)+\(\dfrac{1}{ab\left(a+b\right)+2023}\)
Cho a, b, c là các số dương thỏa mãn: ab+bc+ca=abc. Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)
Cho a; b; c là các số thỏa mãn: ab + bc + ca = 1
Tính giá trị biểu thức: T = \(\dfrac{\left(a+b+c-abc\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
1, a, Tìm tất cả các số tự nhiên có 3 chữ số \(\overline{abc}\)sao cho: \(\hept{\begin{cases}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{cases}}\)với \(n\inℤ,n>2\)
b, Cho \(M=\frac{x^2-2x+2015}{x^2}\)với \(x>0\). Tìm x để M có giá trị nhỏ nhất. Tì giá trị nhỏ nhất đó
2, cho \(\Delta ABC\)đều, E là một điểm thuộc cạnh AC và không trùng với A, K là trung điểm AE. Đường thẳng di qua E và vuông góc với AB tại F cắt đường thẳng vuông đi qua C vuông góc với BC tại D
a, Chứng minh BCKF là hinh thang cân
b, Chung minh EK.EC=ED.EF
c, Xác định vị trí điểm E sao cho KD nhỏ nhất
Cho các số thực không âm a, b, c thỏa mãn ab+bc+ca=1. Tìm giá trị nhỏ nhất của biểu thức \(E=a^2+10\left(b^2+c^2\right)\)
Cho a; b; c là các số thực dương thỏa mãn ab + bc + ca = 3.
CMR: \(\frac{1}{1+a^2\left(b+c\right)}+\frac{1}{1+b^2\left(c+a\right)}+\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{abc}\)