Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 ; e 2 y = 1 . Số phần tử của S là:/
A. 0
B. 1
C. 2
D. Vô số
Tìm tất cả các giá trị thực của tham số m để hàm số y = sin 3 x - 3 cos 2 x - m sin x - 1 đồng biến trên đoạn 0 ; π 2
A. m > -3
B. m ≤ 0
C. m ≤ - 3
D. m > 0
Tìm tất cả các giá trị thực của tham số m để hàm số y = a sin x − 2 2 sin x − a đồng biến trên khoảng π 2 ; 2 π 3 .
A. − 2 ≤ a ≤ 2
B. − 2 < a < 2
C. − 2 < a ≤ 3
D. a > 2 a < − 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = a sin x − 2 2 sin x − a đồng biến trên khoảng π 2 ; 2 π 3 .
A. − 2 ≤ a ≤ 2
B. − 2 < a < 2
C. − 2 < a ≤ 3
D. a > 2 a < − 2
Tất cả các giá trị của tham số thực a để hàm số y = 2 − log 3 a x đồng biến trên R là
A. a < 3
B. 0 < a < 3
C. 0 < a ≤ 3.
D. 0 < a < 9
Cho hàm số y = f ( x ) có đạo hàm trên khoảng a ; b . Xét các mệnh đề sau:
I. Nếu hàm số y = f ( x ) đồng biến trên khoảng a ; b thì f ' x > 0 , ∀ x ∈ a ; b .
II. Nếu f ' x < 0 , ∀ x ∈ a ; b thì hàm số y = f ( x ) nghịch biến trên khoảng a ; b .
III. Nếu hàm số y = f ( x ) liên tục trên a ; b và f ' x > 0 , ∀ x ∈ a ; b thì hàm số y = f ( x ) đồng biến trên đoạn a ; b .
Số mệnh đề đúng là:
A. 3
B. 0
C. 2
D. 1
Gọi S là tập các giá trị của tham số thực m để hàm số y = x 2 + ln x + m + 2 đồng biến trên tập xác định của nó. Biết S = ( - ∞ ; a + b ] . Tính tổng K = a+b
A. K = -5
B. K = 5
C. K = 0
D. K = 2
Một học sinh giải bài toán “Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x 3 + m x 2 + m − 2 x + 10 đồng biến trên i” theo các bước như sau:
Bước 1: Hàm số xác định trên i, và y ' = 3 m x 2 + 2 m x + m − 2
Bước 2: Yêu cầu bài toán tương đương với y ' > 0, ∀ x ∈ ℝ ⇔ 3 m x 2 + 2 m x + m − 2 > 0, ∀ x ∈ ℝ
Bước 3: ⇔ a = 3 m > 0 Δ ' = 6 m − 2 m 2 < 0 ⇔ m < 0 m > 3 m > 0
Bước 4: ⇔ m > 3. Vậy m>3
Hỏi học sinh này đã bắt đầu sai ở bước nào?
A. Bước 2
B. Bước 3
C. Bước 1
D. Bước 4