Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Cho bất phương trình m .3 x + 1 + 3 m + 2 4 − 7 x + 4 + 7 x > 0 , với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ − ∞ ; 0 .
A. m > 2 + 2 3 3 .
B. m > 2 − 2 3 3 .
C. m ≥ 2 − 2 3 3 .
D. m ≥ − 2 − 2 3 3 .
Tìm tất cả các giá trị của tham số thực m để phương trình m 2 - 3 m + 2 x + m - 1 = 0 có nghiệm thực duy nhất.
A. m ≠ 1 m ≠ 2
B. m ≠ 1
C. m ≠ 2
D. m ≠ 1 hoặc m ≠ 2
Tìm tập hợp T tất cả các giá trị của tham số m để phương trình 4 x + 1 - m . 2 x + 2 + 4 = 0 có hai nghiệm phân biệt.
A. T=(-∞;2)
B. T = ( - ∞ ; - 2 ) ∪ ( 2 ; + ∞ )
C. T=(-2;2)
D. T=(2;+∞)
Tìm tất cả các giá trị của m để bất phương trình vô nghiệm m + 1 x 2 + 2 ( m - 2 ) + 2 m - 4 - x 2 + x - 2 ≥ 0
Cho phương trình:
( m − 1 ) log 1 2 2 x − 2 2 + 4 m − 5 log 1 2 1 x − 2 + 4 m − 4 = 0 (với m là tham số). Gọi S = [ a ; b ] là tập các giá trị của m để phương trình có nghiệm trên đoạn 5 2 ; 4 . Tính a+b.
A. 7 3
B. − 2 3
C. − 3
D. 1034 237
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình 9 1 - x + 2 ( m - 1 ) 3 1 - x + 1 = 0 có 2 nghiệm phân biệt.
A. m > 1
B. m < -1
C. m < 0
D. -1 < m < 0
Cho phương trình m - 1 log 1 2 2 x - 2 2 + 4 m - 5 log 1 2 1 x - 2 + 4 m - 4 = 0 (với m là tham số). Gọi S = a , b là tập hợp các giá trị của m để phương trình có nghiệm trên đoạn 5 2 ; 4 . Tính a + b
A. 7 3
B. - 2 3
C. - 3
D. 1034 237
Tìm tất cả các giá trị của tham số m để phương trình x 2 - m x 2 + 1 + m + 4 = 0 có bốn nghiệm phân biệt
A. m>6
B. m>4
C. m>7
D. m>5