Tìm các giá trị m ∈ ℝ để hàm số: y = x - m x 2 + 1 có cực đại
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm các giá trị của tham số m để đồ thị hàm số y =mx^4 +(2m-1)x^2 +m -2 chỉ có 1 cực đại và ko có cực tiểu.
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 3 - 3 m x 2 + ( m - 1 ) x + 2 có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số có hoành độ dương
A. 0 ≤ m ≤ 1
B. m ≥ 1
C. m ≥ 0
D. m > 1
Tìm các giá trị thực của m để hàm số y = x + m x 2 + 1 có cực đại.
Cho (C): y=(x+1)(x-2)(x-m). Xác định m ∈ ℝ để (C) có cực đại, cực tiểu
Tìm tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 - m x 2 + ( m + 1 ) x - 1 đạt cực đại tại x = - 2 ?
A. Không tồn tại m
B. -1
C. 2
D. 3
Tìm tất cả các giá trị thực của tham số m để hàm số: y = 1 3 x 3 + m x 2 + ( m + 6 ) x + m có cực đại và cực tiểu
A. -2 < m < 3
D. - 2 ≤ m ≤ 3 .
Tìm các giá trị của m ∈ ℝ để đồ thị hàm số y = m x 4 - ( m 2 - 1 ) x 2 - 1 chỉ có một điểm cực trị và đó là cực tiểu.