Tìm các chữ số a,b,c biết rằng \(\sqrt{\overline{abc}}\)=(a+ b)\(\sqrt{c}\)
Tìm ba số a, b, c biết: \(\sqrt{\overline{abc}}=\left(a+b\right)\sqrt{c}\)
tìm các chữa số a, b , c thỏa mãn \(\sqrt{\overline{abc}}-\sqrt{\overline{acb}}=1\)
Tìm các chữ số a;b;c ( a \(\ge\)1 ) sao cho \(\sqrt{\overline{abc}}\)= (a+b).\(\sqrt{c}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng: \(\frac{\sqrt{a^2+abc}}{c+ab}+\frac{\sqrt{b^2+abc}}{a+bc}+\frac{\sqrt{c^2+abc}}{b+ca}\le\frac{1}{2\sqrt{abc}}\)
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)
Helpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
Help :(((((((((((((((((((((((((
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)
Help me
Cho a,b,c là các số thực dương thỏa mãn abc=1.Chứng minh rằng \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\ge\dfrac{1}{2}\)