Lời giải:
$(x+1)^2+(y+1)^2+(x-y)^2=2$
Vì $(y+1)^2, (x-y)^2\geq 0$ nên:
$(x+1)^2=2-(y+1)^2-(x-y)^2\leq 2$
Mà $(x+1)^2$ là scp nên $(x+1)^2=0$ hoặc $(x+1)^2=1$
TH1: $(x+1)^2=0\Rightarrow x=-1$
Khi đó: $(y+1)^2+(-1-y)^2=2$
$\Rightarrow 2(y+1)^2=2\Rightarrow (y+1)^2=1$
$\Rightarrow y+1=1$ hoặc $y+1=-1$
$\Rightarrow y=0$ hoặc $y=-2$ (thỏa mãn)
TH2: $(x+1)^2=1\Rightarrow x+1=1$ hoặc $x+1=-1$
$\Rightarrow x=0$ hoặc $x=-2$
Nếu $x=0$ thì:
$1+(y+1)^2+(-y)^2=2$
$\Rightarrow 2y^2+2y=0$
$\Rightarrow 2y(y+1)=0\Rightarrow y=0$ hoặc $y=-1$
Nếu $x=-2$ thì:
$1+(y+1)^2+(-2-y)^2=2$
$\Rightarrow 2y^2+6y+4=0$
$\Rightarrow y^2+3y+2=0$
$\Rightarrow (y+1)(y+2)=0\Rightarrow y=-1$ hoặc $y=-2$
Vậy $(x,y)=(-1,0), (-1,-2), (0,0), (0,-1), (-2, -1), (-2,-2)$