x2 + 4x -y2 = 1
=> x2 + 4x - y2 + 4 = 1 + 4 = 5
=> (x2 + 4x + 4) - y2 = 5
=> (x+2)2 - y2 = 5
=> (x+2-y)(x+2+y) = 5
Ta có:
1.5=5
mà x+2-y < x+2+y
=> \(\hept{\begin{cases}\text{x+2-y=1}\\\text{x+2+y}=5\end{cases}}\)=> \(\hept{\begin{cases}x-y=-1\\x+y=3\end{cases}}\)
Từ x-y = -1 => x = y - 1
Thay x = y - 1 vào x + y, ta có:
x + y = y - 1 + y = 3
=> 2y - 1 = 3
=> 2y = 4 => y=2
=> x = 2 - 1 = 2
Vậy x=2; y = 1 thì x2 + 4x -y2 = 1