Ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
=> \(\frac{x+y}{xy}=\frac{1}{3}\)
=> 3(x + y) = xy
<=> 3x + 3y = xy
<=> xy - 3x - 3y = 0
<=> xy - 3x - 3y + 9 = 9
<=> x(y- 3) - 3(y - 3) = 9
<=> (x - 3)(y - 3) = 9
Lập bảng xét các trường hợp :
x - 3 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 3 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 4 | 2 | 6 | 0(loại) | 12 | -6(loại) |
y | 12 | -6 (loại) | 6 | 0(loại) | 4 | 2 |
Vậy các cặp (x;y) nguyên dương thỏa mãn là (4 ; 12) ; (12 ; 4)