Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tao không có tên

Tìm các cặp số nguyên dương m,n thỏa mãn \(n^3-5n+10=2^m\left(1\right)\)

Đào Thu Hoà
15 tháng 7 2019 lúc 23:19

* Với \(m\le2\)thì từ (1) suy ra \(n^3-5n+10=2^m\le2^2\Rightarrow n^3-5n+6\le0\)(2)

Mặt khác do \(n\inℕ^∗\)nên \(n^3-5n+6>0,\)điều này mâu thuẫn với (2). Vậy \(m>2\).

* Với  \(m=3\)thì thay vào (1) ta có: \(n^3-5n+10=2^3\Leftrightarrow\left(n^3-2n^2\right)+\left(2n^2-4n\right)-\left(n+2\right)=0\)

\(\Leftrightarrow\left(n-2\right)\left(n^2+2n-1\right)=0\)

Do \(n\inℕ^∗\)nên \(n^2-2n-1>0,\)suy ra \(n-2=0\Leftrightarrow n=2\)

* Với  \(m\ge4\)thì biến đổi (1) thành \(\left(n-2\right)\left(n^2+2n-1\right)=8\left(2^{m-3}-1\right)\)(3)

Nhận thấy: \(\left(n^2+2n-1\right)-\left(n-2\right)=n^2+n+1=n\left(n+1\right)+1\)là số lẻ và \(n\inℕ^∗\),

nên hai số \(n^2+2n-1\)và \(n-2\)là hai số tự nhiên khác tính chẵn lẻ. Do đó từ (3) xảy ra 2 khả năng

a)\(\hept{\begin{cases}n-2=8\\n^2+2n-1=2^{m-3}-1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=10\\2^{m-3}=120\end{cases}}\)

Vì  \(2^{m-3}\)là số tự nhiên có số tận cùng khác 0 nên \(2^{m-3}\ne120\). Do vậy trường hợp này không xảy ra.

b)\(\hept{\begin{cases}n-2=2^{m-3}-1\\n^2+2n-1=8\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{m-3}=n-1\\n^2+2n-9=0\end{cases}}\)

Do phương trình \(n^2+2n-9=0\)không có nghiệm tự nhiên nên trường hợp này cũng không xảy ra. 

Vậy có một cặp số nguyên dương duy nhất thỏa mãn là \(\left(m;n\right)=\left(3;2\right).\)

Cách khác : còn có thể xét các trường hợp của \(n\left(n=1;n\ge2\right)\)trước sau đó mới xét \(m\).


Các câu hỏi tương tự
Bùi Văn Minh
Xem chi tiết
Ngọc Khanh
Xem chi tiết
Lê Minh Đức
Xem chi tiết
zZz Hoàng Tử Cô Đơn zZz
Xem chi tiết
le bao truc
Xem chi tiết
bui huong mo
Xem chi tiết
Hà Văn Hoàng Anh
Xem chi tiết
Hà Như Thuỷ
Xem chi tiết
Trần Tích Thường
Xem chi tiết