Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{x-y+z}{3-2+5}=\frac{-10,2}{6}=-1,7\)
\(\Rightarrow x=-5,1;y=-3,4;z=-8,5\)
Ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{5}\) và \(x-y+z=-20\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{x-y+z}{3-2+5}=-\frac{20}{6}=-\frac{10}{3}\)
\(\hept{\begin{cases}\frac{x}{3}=-\frac{10}{3}\Rightarrow x=-\frac{10}{3}.3=-10\\\frac{y}{2}=-\frac{10}{3}\Rightarrow y=-\frac{10}{3}.2=-\frac{20}{3}\\\frac{z}{5}=-\frac{10}{3}\Rightarrow z=-\frac{10}{3}.5=-\frac{50}{3}\end{cases}}\)
Vậy \(x=-10;y=-\frac{20}{3};z=-\frac{50}{3}\)