Ta có:
\(\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\left(a+b+c+d\right).\frac{16}{\left(a+b+c+d\right)}=16\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\)
Dấu = xảy ra khi \(a=b=c=d=1\)
Ta có:
\(\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\left(a+b+c+d\right).\frac{16}{\left(a+b+c+d\right)}=16\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\)
Dấu = xảy ra khi \(a=b=c=d=1\)
Tìm a, b, c thỏa mãn:
\(\hept{\begin{cases}a^4-2b=\frac{-1}{2}\\b^4-2c=\frac{-1}{2}\\c^4-2a=\frac{-1}{2}\end{cases}}\)
có bao nhiêu bộ ba số nguyên a,b,c thỏa mãn hệ
\(\hept{\begin{cases}ab+bc+ca=0\\\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{4}=0\end{cases}}\)
cho a,b,c thỏa mãn \(\hept{\begin{cases}a+b+c=2019\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\end{cases}}\)
cm trong 3 số a,b,c luôn có 1 số bằng 2019
Cho a,b,c thỏa mãn \(\hept{\begin{cases}a+b+c=2020\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\end{cases}}\)
Chứng minh: một trong 3 số a,b,c phải có một số bằng 2020
Cho a,b,c ,(a+b+c) là các số thực khác 0 thỏa mãn điều kiện: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Tính \(A=a^{2021}+b^{2021}+c^{2021}\)
Cho \(\hept{\begin{cases}a,b,c>0\\\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\end{cases}}=2\)
Tìm Max Q = abc
Tính giá trị biểu thức \(P=a^{2009}+b^{2009}+c^{2009}\)
Trong đó a,b,c là các số thực khác 0 thỏa mãn các điều kiện
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Cho\(\hept{\begin{cases}a,b,c>0\\abc>1\end{cases}CMR:}2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge7\left(a+b+c\right)-3\)
cho \(\hept{\begin{cases}a,b,c>0\\a^4+b^4+c^4=3\end{cases}}\).cmr:\(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\)\(\le\)1