+ \(f\left(x\right)=ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)
\(f\left(-2\right)=-8a+4b+c=\left(-2+2\right).Q\left(x\right)\)=> -8a +4b +c =0 ( 1)
+ \(f\left(1\right)=a1^3+b1^2+c=\left(1^2-1\right).H\left(1\right)+\left(1+5\right)\)
=> a+b+c = 6 (2)
+\(f\left(-1\right)=a\left(-1\right)^3+b\left(-1\right)^2+c=\left(\left(-1\right)^2-1\right).H\left(-1\right)+\left(-1+5\right)\)
=> -a +b +c = 4 (3)
từ (2) (3) =. b+c =10 và a =-4
(1) => -8a +4b +c =0 =>4b+c = -32 => 3b +(b+c) = -32 => 3b =-32 - 10 => b =-42/3 = -14
=> c =10 - b = 10 -(-14) = 24
Vậy a = - 4 ; b = -14 ; c = 24