Tao ko thể ngờ là mày ngu đến vậy Hoàng Phúc Tao là Nguyễn Việt Hà
Tao ko thể ngờ là mày ngu đến vậy Hoàng Phúc Tao là Nguyễn Việt Hà
Tìm a và b, biết:
\(\frac{225}{157}=a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}\)
tìm \(C=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
biết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Chứng minh rằng
a) \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) biết abc=1
b) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
1)Tìm 2 số m,n sao cho
2m-1 chia hết cho n
2n-1 chia hết cho m
2)cho 3 số a;b;c biết a.b.c=1
cm\(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}< =\left(\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\right).\frac{1}{4}\)
3)Tìm x,y nguyên :
x2+2y2+3xy-2x-4y-5=0
1. Cho a + b + c = 9 và a,b,c là các số dương. Tìm GTNN của P = \(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\)
2. Cho a,b,c > 0 thõa mãn: a + b + c = 1. Tìm GTNN của Q = \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Bài 1: Tìm x,y,z biết rằng: \(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
Bài 2: Cho biết:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2,\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
CMR: a+b+c= abc
cho a,b,c>0 , chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\) Áp dụng chứng minh các BĐT sau:
a,\(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b,cho \(x,y,z>0\) thỏa mãn x+y+z=1.Tìm GTLN của biểu thức\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
c,cho a,b,c>0 thỏa mãn\(a+b+c\le1\) Tìm GTNN của biểu thức\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
d,cho a,b,c >0 thỏa mãn a+b+c=1.Chứng minh\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge30\)