+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.
(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)
Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.
Tìm x;y 5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)
Ta tìm được 1! + 4! + 5! = 145
Vậy a = 1; b = 4; c = 5.
+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.
(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)
Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.
Tìm x;y 5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)
Ta tìm được 1! + 4! + 5! = 145
Vậy a = 1; b = 4; c = 5
+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.
(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)
Ta có: 5! +5! +5! = 360 (không thỏa) => abc ≤ 5! + 5! + 4! =264
=> a ≤ 2 => a = 2 hoặc a = 1
+a = 2
5! + 2! + x! = 25x hoặc 2x5 . Thử x = 1; 2; 3; 4; 5 ta thấy đều không thỏa.
+a = 1
1! + 5! + x! = 15x hoặc 1x5. Thử x = 1;2;3;4;5 ta tìm được x = 4 thì 1! + 4! + 5! = 145 (thỏa mãn).
Vậy a = 1; b = 4; c = 5
1! + 4! + 5! = 145 là trường hợp duy nhất thỏa đề
+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.
(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)
Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.
Tìm x;y 5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)
Ta tìm được 1! + 4! + 5! = 145
Vậy a = 1; b = 4; c = 5.
các bạn ơi giúp mình vs
tìm 1 số có 2 chữ số biết rằng nếu lấy 3 lần chữ số hàng chục trừ đi 1 thì bằng chữ số hàng đơn vị
nhanh lên mình cần gấp nha các bn