Do \(\frac{a}{b}=\frac{3}{5}\)nên \(b=\frac{3}{5}a\)
Do \(\frac{a-168}{b+168}=\frac{7}{9}\) nên \(9\left(a-168\right)=7\left(b+168\right)\)
\(\Rightarrow9a-1512=7b+1176\)
\(\Rightarrow9a-1512=\left(7b-1512\right)+2688\)
\(\Rightarrow2688=\left(9a-1512\right)-\left(7b-1512\right)\)
\(\Rightarrow2688=\left(9a-1512\right)-\left(7.\frac{3}{5}a-1512\right)\)
\(\Rightarrow2688=\left(91-1512\right)-\left(\frac{21}{5}a-1512\right)\)
\(\Rightarrow2688=9a-1512-\frac{21}{5}a+1512\)
\(\Rightarrow2688=9a-\frac{21}{5}a\)
\(\Rightarrow2688=\left(9-\frac{21}{5}\right)a\)
\(\Rightarrow2688=\frac{24}{5}a\)
\(\Rightarrow a=2688:\frac{24}{5}=560\)
\(\Rightarrow b=\frac{3}{5}.560=336\)