Đặt \(\hept{\begin{cases}a-23=m^2\\a+22=n^2\end{cases}}\left(m,n\inℕ\right)\)
Ta có : \(a+22>a-23\Rightarrow n^2>m^2\)
\(\Rightarrow n^2-m^2=a+22-\left(a-23\right)\)
\(\Rightarrow n^2-m^2=a+22-a+23\)
\(\Rightarrow\left(n-m\right)\left(n+m\right)=45\)
Từ đây ta lập bảng các ước dương của 45
n-m | 1 | 3 | 5 | 9 | 15 | 45 |
n+m | 45 | 15 | 9 | 5 | 3 | 1 |
n | 23 | 9 | 7 | 7 | 9 | 23 |
m | 22 | 6 | 2 | -2 | -6 | -22 |
Vì m, n ∈ N => \(\hept{\begin{cases}n\in\left\{23;9;7\right\}\\m\in\left\{22;6;2\right\}\end{cases}}\)=> \(\hept{\begin{cases}n^2\in\left\{529;81;49\right\}\\m^2\in\left\{484;36;4\right\}\end{cases}}\)
=> \(\hept{\begin{cases}a-23\in\left\{484;36;4\right\}\\a+22\in\left\{529;84;49\right\}\end{cases}}\Rightarrow a\in\left\{507;59;27\right\}\)
Chắc là có sai sót ;-;