Lời giải:
Gọi số cần tìm là $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{abc}=13\times (a+b+c)$
$100\times a+10\times b+c=13\times a+13\times b+13\times c$
$87\times a=3\times b+12\times c$
$87\times a=3\times (b+4\times c)$
$87\times a:3=b+4\times c$
$29\times a=b+4\times c$
Ta có:
$29\times a=b+4\times c< 10+4\times 10=50$
$a< 50:29< 2$
$\Rightarrow a=1$
Khi đó: $b+4\times c=29$
$4\times c=29-b$
Vì $4\times c$ chẵn nên $b$ lẻ. Suy ra $b=1,3,5,7,9$
Nếu $b=1$ thì $4\times c=29-1=28$
$c=28:4=7$
Nếu $b=3$ thì $4\times c=29-3=26$
$c=26:4=6,5$ (loại)
Nếu $b=5$ thì $4\times c=29-5=24$
$c=24:4=6$
Nếu $b=7$ thì $4\times c=29-7=22$
$c=22:4=5,5$ (loại)
Nếu $b=9$ thì $4\times c=29-9=20$
$c=20:4=5$
Vậy số cần tìm có thể là 117, 156, 195
Lời giải:
Gọi số cần tìm là $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{abc}=13\times (a+b+c)$
$100\times a+10\times b+c=13\times a+13\times b+13\times c$
$87\times a=3\times b+12\times c$
$87\times a=3\times (b+4\times c)$
$87\times a:3=b+4\times c$
$29\times a=b+4\times c$
Ta có:
$29\times a=b+4\times c< 10+4\times 10=50$
$a< 50:29< 2$
$\Rightarrow a=1$
Khi đó: $b+4\times c=29$
$4\times c=29-b$
Vì $4\times c$ chẵn nên $b$ lẻ. Suy ra $b=1,3,5,7,9$
Nếu $b=1$ thì $4\times c=29-1=28$
$c=28:4=7$
Nếu $b=3$ thì $4\times c=29-3=26$
$c=26:4=6,5$ (loại)
Nếu $b=5$ thì $4\times c=29-5=24$
$c=24:4=6$
Nếu $b=7$ thì $4\times c=29-7=22$
$c=22:4=5,5$ (loại)
Nếu $b=9$ thì $4\times c=29-9=20$
$c=20:4=5$
Vậy số cần tìm có thể là 117, 156, 195