Ý em là tính \(\int\limits^{\pi}_{\dfrac{\pi}{2}}cos2xdx\) đúng không nhỉ?
Ý em là tính \(\int\limits^{\pi}_{\dfrac{\pi}{2}}cos2xdx\) đúng không nhỉ?
Biết kết quả tích phân\(I=\)\(\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{\cos x}{\sin x+1}dx=aln2+bln3\) với \(a,b\) nguyên.Gía trị của \(H=a.b\) là
Tính tích phân I=\(\int\limits^{\pi}_0\)\(x^2cos2xdx\) bằng cách đặt \(\left\{{}\begin{matrix}u=x^2\\dv=cos2xdx\end{matrix}\right.\).Mệnh đề nào dưới đây đúng?
A. \(I=\dfrac{1}{2}x^2sin2x|^{^{\pi}_0}-\int\limits^{\pi}_0xsin2xdx\)
B. \(I=\dfrac{1}{2}x^2sin2x|^{^{\pi}_0}-2\int\limits^{\pi}_0xsin2xdx\)
C. \(I=\dfrac{1}{2}x^2sin2x|^{^{\pi}_0}+\int\limits^{\pi}_0xsin2xdx\)
D. \(I=\dfrac{1}{2}x^2sin2x|^{^{\pi}_0}+2\int\limits^{\pi}_0xsin2xdx\)
Giá trị cực đại của hàm số \(y=x+sin2x\) trên \(\left(0;\pi\right)\)là
\(A.\frac{\pi}{6}+\frac{\sqrt{3}}{2}\)
\(B.\frac{2\pi}{3}+\frac{\sqrt{3}}{2}\)
\(C.\frac{2\pi}{3}-\frac{\sqrt{3}}{2}\)
\(D.\frac{\pi}{3}+\frac{\sqrt{3}}{2}\)
Tìm các khoảng đồng biến của hàm số: y = 2sinx + cos2x, x ∈ [0;π] A. (0; pi/2 B. (pi/2; pi) C. (0; pi/6) và pi/2; 5pi/6) D. (0;pi).
Tính tích phân sau: ∫ 0 π 2 2 cos x - sin 2 x d x
A. -1
B. 0
C. 1
D. 2
Áp dụng phương pháp tính tích phân từng phần, hãy tính các tích phân sau: ∫ 0 ln 2 x e - 2 x d x
Biết ∫ 0 π / 4 x 1 + cos 2 x d x = a π + bln 2 , với a,b là các số hữu tỉ. Tính T=16a-8b
A. .
B. .
C. .
D. .
Cho \(A=x^{1^{2^{3^{4^{5^{6^{7^{8^{9^{10^{11^{12^{13^{14^{15^{16^{17^{18^{19^{20^{21^{22^{.......}}}}}}}}}}}}}}}}}}}}}}},B=x^{\text{\pi}^{\pi^{\pi^{\pi^{\pi^{...^{...^{..}}}}}}}}\)
Tìm giá trị \(\left(2A-A\right)A-1\left(A+1\right)-B\)
Xét tích phân I=\(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{sin2x}{\sqrt{1+cosx}}dx\). Nếu đặt t=\(\sqrt{1+cosx}\), khẳng định nào dưới đây là đúng?
A. I= \(\int\limits^1_{\sqrt{2}}\dfrac{4t^3-4t}{t}dt\)
B. I= \(\int\limits^1_{\sqrt{2}}\dfrac{-4t^3+4t}{t}dt\)
C. I= \(4\int\limits^{\sqrt{2}}_1\left(t^2-1\right)dt\)
D. I= \(-4\int\limits^{\sqrt{2}}_1\left(t^2-1\right)dt\)
Cho hàm số \(y=f\left(x\right)\)không âm có đạo hàm trên \(\left[0;\frac{\pi}{4}\right]\)thỏa mãn \(f\left(x\right)=\frac{f'\left(x\right)}{cosx}\).Biết \(f\left(0\right)=1\).giá trị của \(f\left(\frac{\pi}{4}\right)?\)(Đáp án:\(e^{\frac{\sqrt{2}}{2}}\))