Ta có:\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{9900}-\left(\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+....+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}\)
\(=-\frac{9799}{9900}\)
Tk mk nha mn
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{9900}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}\)
\(=\frac{9799}{9900}\)