a) \(\left(2x+1\right)^2+2.\left(2x+1\right)+1=\left(2x+2\right)^2\)
b) \(\left(3x-2y\right)^2+4.\left(3x-2y\right)+4\)
\(=\left(3x-2y\right)^2+2.\left(3x-2y\right).2+2^2\)
\(=\left(3x-2y+2\right)^2\)
a) \(\left(2x+1\right)^2+2\left(2x+1\right)+1=\left(2x+2\right)^2\)
b) \(\left(3x-2y\right)^2+4\left(3x-2y\right)+4=\left(3x-2y+2\right)^2\)
a) (2x+1)2+2(2x+1)+1=[(2x+1)+1]2=(2x+2)2
b) (3x-2y)2+4(3x-2y)+4=[(3x-2y)+2]2=(3x-2y+2)2
a, \(\left(2x+1\right)^2+2\left(2x+1\right)+1=4x^2+4x+1+4x+2+1=4x^2+8x+4=\left(2x+2\right)^2\)
b, \(\left(3x-2y\right)^2+4\left(3x-2y\right)+4=9x^2-12xy+4y^2+12x-8y+4=\left(3x-2y+2\right)^2\)
( 2x + 1 )2 + 2( 2x + 1 ) + 1 = [ ( 2x + 1 ) + 1 ]2 = ( 2x + 1 + 1 )2 = ( 2x + 2 )2
( 3x - 2y )2 + 4( 3x - 2y ) + 4 = ( 3x - 2y )2 + 2( 3x - 2y )2 + 22 = [ ( 3x - 2y )+ 2 ]2 = ( 3x - 2y + 2 )2
Bài làm :
a) ( 2x + 1 )2 + 2( 2x + 1 ) + 1
= [ ( 2x + 1 ) + 1 ]2
= ( 2x + 1 + 1 )2
= ( 2x + 2 )2
b) ( 3x - 2y )2 + 4( 3x - 2y ) + 4
= ( 3x - 2y )2 + 2( 3x - 2y )2 + 22
= [ ( 3x - 2y )+ 2 ]2
= ( 3x - 2y + 2 )2