Thu gọn biểu thức sau:
\(B=5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2-\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\right)^2\)
thu gọn biểu thức sau
\(A=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
Rút gọn biểu thức M= \(\frac{\sqrt{6+2\times\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\times\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
Bài 1: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)
Bài 2: Tính giá trị của biểu thức:
\(E=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 3: Chứng minh rằng các biểu thức sau có gúa trị là số nguyên
\(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Giúp mình bài này với mình đang cần gấp
Rút gọn các biểu thức sau:
C=\(\frac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)\(-\frac{\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
D=\(\frac{\sqrt{9-6\sqrt{2}}-\sqrt{6}}{\sqrt{3}}\)
rút gọn biểu thức\(\frac{\sqrt{2-\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
Cho biểu thức: \(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right):\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)
a)Rút gọn biểu thức
b)Tính P với \(x=\frac{\sqrt{4+2\sqrt{3}}\left(\sqrt{x}-1\right)}{\sqrt{6+2\sqrt{5}-\sqrt{5}}}\)
Rút gọn các biểu thức sau:
a) \(0,2\sqrt{\left(-10\right)^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\) b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
c) \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right):\sqrt{6}\) d) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
Thu gọn biểu thức
\(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2+\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)