\(\left(a+b-c\right)+\left(a-b+c\right)-\left(a-b-c\right)\)
\(=a+b-c+a-b+c-a+b+c\)
\(=a+b+c\)
( a + b - c ) + ( a - b + c ) - ( a - b - c )
= a + b + c + a - b + c - a + b + c
= a + b + 3c
(a+b-c)+(a-b+c)-(a-b-c) = a + b - c + a - b + c - a - b - c = (a+a-a)+(b-b-b)+(-c+c-c) = a - b - c
nhầm (a+b-c)+(a-b+c)-(a-b-c) = a+b - c + a -b +c - a + b + c = a + b +c
(a+b−c)+(a−b+c)−(a−b−c)
=a+b−c+a−b+c−a+b+c
=a+b+c
\(\left(a+b-c\right)+\left(a-b+c\right)-\left(a-b-c\right)\)
\(=a+b-c+a-b+c-a+b+c\)
\(=a+b+c\)
( a + b - c ) + ( a - b + c ) - ( a - b - c )
= a + b - c + a - b + c - a + b + c
= a + b + c
{a+b-c}+{a-b+c}-{ a-b-c}
=a+b-c+a-b+c+a+b+c
=a+a+a-b+b+b+c+c+c
= a.3-b.3+c.3
=3{a-b+c}
\(\left(a+b-c\right)+\left(a-b+c\right)-\left(a-b-c\right)\)
\(=a+b-c+a-b+c-a+b+c\)
\(=\left(a+a-a\right)+\left(b-b+b\right)+\left(-c+c+c\right)\)
\(=a+b+c\)