Tính thể tích V của khối lập phương ABCD.A’B’C’D’ biết AC' = a 3
A . V = a 3
B . V = a 3 4
C . V = 3 6 a 3 4
D . V = 3 3 a 3
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 2a. Một hình trụ có hai đáy là hai hình tròn nội tiếp trong hai hình vuông ABCD và A’B’C’D’. Tính thể tích của khối lăng trụ tạo nên từ hình trụ trên.
A . 2 πa 3
B . πa 3
C . 2 2 πa 3
D . 4 πa 3
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng a. Tính thể tích khối tứ diện A’C’BD bằng:
A . a 3 2
B . a 3 3
C . a 3 3 2
D . a 3 2 3
Cho hình lập phương ABCD.A’B’C’D’. Gọi M là điểm trên đường chéo CA’ sao cho Tính tỉ số giữa thể tích V 1 của khối chóp M.ABCD và thể tích V 2 của khối lập phương
Cho hình lập phương ABCD.A’B’C’D’. I là trung điểm BB’. Mặt phẳng (DIC’) chia khối lập phương thành 2 phần có tỉ số thể tích phần bé chia phần lớn bằng:
A. 1:3
B. 7:17
C. 4:14
D. 1:2
Tính thể tích của khối lập phương ABCD.A'B'C'D' biết AD' = 2a
A. V = a 3
B. V = 8 a 3
C. V = 2 2 a 3
D. V = 2 2 3 a 3
Gọi V là thể tích hình lập phương ABCD.A’B’C’D’, là thể tích của tứ diện A’ABD. Hệ thức nào sau đây là đúng?
A. V= 6 V 1
B. V = 4 V 1
C. V = 3 V 1
D. V = 2 V 1
Cho khối lập phương ABCD.A’B’C’D’ cạnh a. Các điểm E và F lần lượt là trung điểm của C’B’ và C’D’. Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi V 1 là thể tích khối chứa điểm A’ và V 2 là thể tích khối chứa điểm C’. Khi đó V 1 V 2 là.
Cho hình lập phương ABCD.A’B’C’D có ẠC' = a (a > 0). Thế tích của khối lập phương đó là
A . a 3 3
B . a 3 3 9
C . a 3
D . 3 a 3 3