Đáp án B
Thể tích của khối tứ diện đều cạnh 1 là V = 2 12
Đáp án B
Thể tích của khối tứ diện đều cạnh 1 là V = 2 12
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Trên cạnh SC lấy điểm E sao cho S E = 2 E C . Tính thể tích V của khối tứ diện SEBD.
A. V=2/3
B. V=1/6
C. V=1/12
D. V=1/3
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;0), B(2;2;2), C(-2;3;1) và đường thẳng d : x - 1 2 = y + 2 - 1 = z - 3 2 . Tìm điểm M thuộc d để thể tích V của tứ diện MABC bằng 3.
A. M 1 - 15 2 ; 9 4 ; - 11 2 , M 2 - 3 2 ; - 3 4 ; 1 2
B. M 1 - 3 5 ; - 3 4 ; 1 2 , M 2 - 15 2 ; 9 4 ; 11 2
C. M 1 3 2 ; - 3 4 ; 1 2 , M 2 15 2 ; 9 4 ; 11 2
D. M 1 3 5 ; - 3 4 ; 1 2 , M 2 15 2 ; 9 4 ; 11 2
Một khối nón có diện tích đáy bằng 9p và diện tích xung quanh bằng 15p. Tính thể tích V của khối nón.
A. V =10p
B. V =12p
C. V = 20p
D. V = 45p
Cho khối chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh bằng 1, S A = 1 và S A ⊥ ( A B C ) . Tính thể tích của khối chóp đã cho.
A. 3 12
B. 2 4
C. 3 4
D. 2 12
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy và SA=3 Mặt phẳng α qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tự diện CMNP.
A. V = 64 2 π 3
B. V = 125 π 6
C. V = 32 π 3
D. V = 10 Sπ 3
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Cho hình tứ diện đều ABCD có cạnh bằng 3. Gọi G 1 , G 2 , G 3 , G 4 là trọng tâm của bốn mặt của tứ diện ABCD. Tính thể tích V của khối tứ diện G 1 G 2 G 3 G 4 .
A. V = 2 4
B. 2 18
C. V = 2 32
D. V = 2 12
Cho tứ diện đều cạnh a Tính thể tích V của khối tứ diện đều đó
A. V = a 3 3 12
B. V = a 3 4
C. V = a 3 2 12
D. V = a 3 3 8