Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Diệu Em Touka

\(\text{Cho $a+b+c=0$. Chứng minh:}\\a^3+b^3+c^3=3abc\)

Yeutoanhoc
28 tháng 2 2021 lúc 19:51

`a^3+b^3+c^3=3abc(***)`

`a^3+b^3+c^3-3abc=0`

`<=>a^3+3ab(a+b)+c^3-3ab(a+b)-3abc=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+2ab-ac-bc)-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ac-bc-ab)=0`

Luôn đúng với `a+b+c=0`

`=>(***)` được chứng minh.

Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 19:52

Ta có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)(đpcm)

Nguyễn Trọng Chiến
28 tháng 2 2021 lúc 19:53

\(GT\Rightarrow a+b=-c\)

Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(-c\right)^3+c^3-3ab\left(-c\right)-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\) Vậy...


Các câu hỏi tương tự
trần khởi my
Xem chi tiết
Mi Tạ Tiểu
Xem chi tiết
Võ Thị Hiền Luân
Xem chi tiết
Vũ Thành Khoa
Xem chi tiết
nam do
Xem chi tiết
Nguyễn An Tú
Xem chi tiết
Ngọc Hiền
Xem chi tiết
erffsdaseefd
Xem chi tiết
Phương lan
Xem chi tiết