\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
Cho a,b,c>0 thỏa a+b+c=1
Chứng minh : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\sqrt[3]{abc}\ge\frac{10}{9\left(a^2+b^2+c^2\right)}\)
\(\text{Cho $a+b+c=0$. Chứng minh:}\\a^3+b^3+c^3=3abc\)
a) Với \(n\in N\). Chứng minh:
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
b) Cho a,b,c > 0. Chứng minh:
+) Nếu \(a+b+c=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì a = b = c.
+) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\).
Cho 3 số thực dương a,b,c thõa mãn 1/a+1/b+1/c =1.
Chứng minh rằng: a^2/(a+bc) + b^2/( b+ac)+ c^2/(c+ab)>= (a+b+c)_4
Cho a,b,c là các số thực dương. Chứng minh \(T=\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+b+a}\le\frac{3}{5}\)
Cho các số thực dương a,b,c. Chứng minh rằng:
\(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
cho a;b;c>0 : a+b+c=1. c/m 5(a^2+b^2+c^2)-6(a^3+b^3+c^3)\(\le\)1
cho 4 số nguyên dương a,b,c,d thỏa mãn a^2+b^2=c^2+d^2.Chứng minh a+b+c+d là hợp số
cho 3 số thực a,b,c thoả mãn a+b+c=2013.
chứng minh \(\dfrac{a}{a+\sqrt{2013a}+bc}+\dfrac{b}{b+\sqrt{2013c+ab}}+\dfrac{c}{c+\sqrt{2013c+ab}}\le1\)