Lời giải:
Đặt đa thức đã cho là $P(a,b,c)$
Ta có:
$P(0,b,c)=b(c-b)^2+c(b-c)^2+(b-c)(b+c)(c-b)$
$=(b+c)(c-b)^2-(b+c)(b-c)^2=0$
$P(a,0,c)=a(c-a)^2+c(a-c)^2+(a-c)(c-a)(a+c)=0$
$P(a,b,0)=a(b-a)^2+b(a-b)^2+(a+b)(b-a)(a-b)=0$
Điều đó nghĩa là $a,b,c$ là nghiệm của $P(a,b,c)$
Do đó:
$P(a,b,c)=Aabc$
Thay $a=b=1, c=2$ ta có:
$8=2A\Rightarrow A=4$
Vậy $P=4abc$