Tất cả các nghiệm phức của phương trình ( z 3 − 64 ) ( z 2 + 2 ) = 0 có tổng môđun là
A. 4 + 2 2
B. 4 + 2
C. 8 + 2
D. 12 + 2 2
Xác định tất cả các số thực m để phương trình
z 2 - 2 z + 1 - m = 0 có nghiệm phức z thỏa mãn z = 2 .
A. m = 1 ; m = 9 .
B. m = - 3
C. m = - 3 ; m = 1 ; m = 9 .
D. m = - 3 ; m = 9
Số phức z = a + b i a , b ∈ ℝ là số phức có môđun nhỏ nhất trong tất cả các số phức thỏa điều kiện z + 3 i = z + 2 − i , khi đó giá trị z . z ¯ bằng
A. 1 5
B. 5
C. 3
D. 3 25
Số nghiệm phức của phương trình z + 2 | z | + 3 - i = ( 4 + i ) | z | z là
A. 1.
B. 2.
C. 3.
D. 4.
Gọi S là tổng tất cả các số thực m để phương trình z 2 - 2 z + 1 - m = 0 có nghiệm thức z thỏa mãn z = 2 . Tính S
A. S = -3
B. S = 6
C. S = 10
D. S = 7
Cho phương trình 4 - x - a . log 3 x 2 - 2 x + 3 + 2 - x 2 + 2 x . log 1 3 2 x - a + 2 = 0 . Tập tất cả các giá trị của tham số a để phương trình có 4 nghiệm x 1 ; x 2 ; x 3 ; x 4 thỏa mãn là (c;d). Khi đó giá trị biểu thức T = 2 c + 2 d bằng:
A. 5
B. 2
C. 3
D. 4
Gọi S là tập hợp tất cả các giá trị thực của m để tồn tại 4 số phức z thỏa mãn | z + z ¯ | + | z - z ¯ | = 2 và z ( z ¯ + 2 ) - ( z + z ¯ ) - m là số thuần ảo. Tổng các phần tử của S là:
A. c
B. 2 + 1 2
C. 2 - 1 2
D. 1 2
Gọi S là tổng các số thực m để phương trình z 2 - 2 z + 1 - m = 0 có nghiệm phức thỏa mãn |z|=2. Tính S
A. 6
B. 10
C. -3
D. 7
Cho phương trình y = x 3 - 6 x 2 + 9 x - 2 và các phát biểu sau:
(1) x = 0 là nghiệm duy nhất của phương trình
(2) Phương trình có nghiệm dương
(3) Cả 2 nghiệm của phương trình đều nhỏ hơn 1
(4) Phương trình trên có tổng 2 nghiệm là: - log 5 3 7
Số phát biểu đúng là:
A. 1
B. 2
C. 3
D. 4