Tập xác định của hàm số y = x + 1 x 2 - 5 x + 6 4 - x là:
A.[-1;4)\{2;3}
B.[-1;4)
C.(-1;4]\{2;3}
D.(-1;4)\{2;3}
Cho hàm số y = a x 3 + b x 2 + c x + d đạt cực đại tại x = -2 với giá trị cực đại là 64; đạt cực tiểu tại x = 3 với giá trị cực tiểu là -61. Khi đó giá trị của a + b + c + d bằng
A. 1
B. 7
C. -17
D. 5
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Cho hàm số y = f ( x ) có tập xác định là D = 0 ; + ∞ , D = 0 ; + ∞ và lim x → 0 + y = - ∞ ; lim x → + ∞ y = + ∞ . Mệnh đề nào sau đây đúng ?
A. Đồ thị hàm số y = f x không có tiệm cận đứng và có tiệm cận ngang.
B. Đồ thị hàm số y = f x có tiệm cận đứng và có tiệm cận ngang
C. Đồ thị hàm số y = f x có tiệm cận đứng, không có tiệm cận ngang.
D. Đồ thị hàm số y = f x không có tiệm cận đứng và không có tiệm cận ngang
Cho các mệnh đề sau đây:
(1) Ta có biểu thức sau log 3 x + 5 + log 9 x - 2 2 - log 3 x - 1 = log 3 x + 5 x - 2 x - 1 2
(2) Hàm số log 3 x - 3 2 có tập xác định là D = R.
(3) Hàm số y = log a x có đạo hàm ở tại mọi điểm x > 0 .
(4) Tập xác định D của hàm số y = 2 x - 1 + ln 1 - x 2 là: D = 1 2 ; 1 .
(5) Đạo hàm của hàm số y = 2 x - 1 + ln 1 - x 2 là 1 2 x - 1 - 2 x 1 - x 2 .
Hỏi có bao nhiêu mệnh đề đúng:
A. 2
B. 4
C. 3
D. 5
Cho hàm số y = ( x - 2 ) - 1 2 Bạn Toán tìm tập xác định của hàm số bằng cách như sau:
Bước 1: Ta có y = 1 ( x - 2 ) 1 2 = 1 x - 2
Bước 2: Hàm số xác định ⇔ x - 2 > 0 ⇔ x > 2
Bước 3: Vậy tập xác định của hàm số là D = ( 2 ; + ∞ )
Lời giải trên của bạn toán đúng hay sai? Nếu sai thì sai ở bước nào?
A. Bước 3
B. Bước 1
C. Đúng
D. Bước 2
Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)
Cho các phát biểu sau
(1) Đơn giản biểu thức M = a 1 4 - b 1 4 a 1 4 + b 1 4 a 1 2 + b 1 2 ta được M = a - b
(2) Tập xác định D của hàm số y = log 2 ln 2 x - 1 là D = e ; + ∞
(3) Đạo hàm của hàm số y = log 2 ln x là y ' = 1 x ln x . ln 2
(4) Hàm số y = 10 log a x - 1 có đạo hàm tại mọi điểm thuộc tập xác định
Số các phát biểu đúng là
A. 6
B. 1
C. 3
D. 4
Cho a là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau:
1. Hàm số y= l o g a x có tập xác định là D= ( 0 ; + ∞ ) .
2. Hàm số y= l o g a x là hàm đơn điệu trên khoảng ( 0 ; + ∞ ) .
3. Đồ thị hàm số y= l o g a x và đồ thị hàm số y = a x đối xứng nhau qua đường thẳng y= x.
4. Đồ thị hàm số y= l o g a x nhận Ox là một tiệm cận
A. 4
B. 1
C. 3
D. 2
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d , ( a , b , c , d ∈ ℝ ) thỏa mãn a > 0 , d > 0 > 2018 , a + b + c + d - 2018 < 0 Tìm số điểm cực trị của hàm số y = f ( x ) - 2018
A. 2
B. 1
C. 3
D. 5