Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phan tuấn anh

tập nghiệm của pt : \(\sqrt[3]{\left(65+x\right)^2}+4\sqrt[3]{\left(65-x\right)^2}=5\sqrt[3]{65^2-x^2}\)

Nguyễn Quốc Khánh
7 tháng 12 2015 lúc 21:28

Lập phương 2 vế ta đc

\(\left(65+x\right)^2+64\left(65-x\right)^2+3\sqrt[3]{64\left(65-x\right)^2\left(65+x\right)^x}.\left(\sqrt[3]{\left(65+x\right)^2}+\sqrt[3]{\left(65-x\right)^2}\right)=125\left(65^2-x^2\right)\)

<=>\(65x^2-8190x+274625+3\sqrt[3]{64\left(65^2-x^2\right)}.\sqrt[3]{65^2-x^2}=125\left(65^2-x^2\right)\)\(65x^2-8190x+274625+3.4.\sqrt[3]{65^2-x^2}=125\left(65^2-x^2\right)\)

Trần Đức Thắng
7 tháng 12 2015 lúc 21:36

Đặt 

 \(\sqrt[3]{\left(65+x\right)}=a;\sqrt[3]{65-x}=b\) => \(a^3+b^3=130\)  ta có Hpt :

\(a^2+4b^2=5ab\) (1) 

\(a^3+b^3=130\) (2)

từ pt (1) => a = b Hoặc a = 4b 

Thay vào pt (2) tìm ra b => a 

 

 

 


Các câu hỏi tương tự
....
Xem chi tiết
Minh_28_Anh_09_Lê
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
lipphangphangxi nguyen k...
Xem chi tiết
Kamka Lanka
Xem chi tiết
Linh Vũ
Xem chi tiết
Hùng Hoàng
Xem chi tiết
huyen vu
Xem chi tiết
tiểu an Phạm
Xem chi tiết